本文目录一览:
华罗庚是怎样破解数学题的故事和方法
华罗庚,出生在江苏省金坛县一个贫困家庭。这是当时一个非常闭塞的县城。
童年时代,他最想骑马。他将一个小木凳拴上绳子,牵着当马骑,边骑边喊“马嘟嘟,马嘟嘟。”现在这个小凳子还陈列在金坛的“华罗庚纪念馆”里呢。稍大以后,他就把家中小杂货店的柜台当马骑,跳上跳下,并且还不时学着大人骑马的样子,感觉十分得意。
华罗庚特别爱动脑,对于一些别人看来司空见惯的事,往往也表现出浓厚的兴趣,提出一些似乎希奇的问题。有一次,他同别人一块去城郊玩耍,见一座荒坟旁有石人石马,就问比他大的同伴:“这些石人石马有多重?”同伴回答说:“这怎么能知道呢。”华罗庚却不甘心,沉思片刻,说:“以后总会有方法知道的。”
在当年的金坛,华罗庚最喜欢去的地方,还是灯节、船会、庙会等场所,凡是这些热闹的地方都少不了他的身影。城东有座青龙山,山上有个庙。每逢庙会,庙中的“菩萨:”便头插羽毛,打扮得花花绿绿,骑着高头大马进城来。一路上,人们见到“菩萨”就磕头行礼,祈求幸福。华罗庚伸直脖子,望着双手合十的“菩萨”,心里暗自琢磨:“‘菩萨’果真万能吗?”当庙会散了,人们也陆续回家,华罗庚却跟着“菩萨”去了青龙山,想探个究竟,看一看“菩萨”的真面目。
来到庙里,“菩萨”卸了装,华罗庚一看“菩萨”是人扮的,就立刻往家跑。回到家,他便兴高采烈地对妈妈说:“妈,你往后不要给‘菩萨’磕头了,‘菩萨’是骗人的1父亲马上训斥道:“唉呀,罪过,小孩子懂什么?”他却认真反驳道:“我到青龙山的庙里去了,‘菩萨’原来是假的,是人装扮的1
华罗庚的数学作业,经常有涂改的痕迹,很不整洁,老师开始时非常不满意。后来经过仔细辨别,老师发现华罗庚是在不断改进和简化自己的解题方法。
华罗庚在中学读书时,曾对传统的珠算方法进行了认真思考。他经过分析认为:珠算的加减法难以再简化,但乘法还可以简化。乘法传统打法是“留头法”或“留尾法”,即先将乘法打上算盘,再用被乘数去乘;每用乘数的一位数乘被乘数,则在乘数中将该位数去掉;将乘数用完了,即得最后答案。华罗庚觉得:何不干脆将每次乘出的答数逐次加到算盘上去呢?这样就省掉了乘数打上算盘的时间例如:28×6,先在算盘上打上2×6=12,再退一位,加上8×6=48,立即得168,只用两步就能得出结果。对于除法,也可以同样化为逐步相减来做节省的时间就更多的。
凭着这一点改进,再加上他擅长心算,华罗庚在当时上海的珠算比赛中获得了冠军。
华罗庚不仅对数学肯动脑筋,对语文也很用心。有一次,老师把自己收藏的文学大师胡适的书分给学生,让每人看完后写一篇读后感。华罗庚分得的是《尝试集》,书中流露出作者提倡白话文的得意,认为自己是一次成功的尝试,于是在扉页上写了一首《序诗》:“尝试成功自古无,放翁这话未必是。我今为下一转语,自古成功在尝试。”
华罗庚在读后感中,并未表达出老师所期望的对胡适的赞美之词,而是尖锐地指出:胡适的这首诗概念混乱,第一句中的“尝试”与第四句中的“尝试”是两个完全不同的概念。第一句中的“尝试”是指初次尝试,当然一试就成功是比较罕见的;第四句中的“尝试”则是指经过多次尝试或失败之后的一次成功尝试,所以它们具有不同的含意。单独来看两个“尝试”都是有道理的,但胡适将二者放在一起,则是拿自己的概念随意否定别人(陆放翁)的概念,真是岂有此理!他说:“胡适序诗逻辑混乱,不堪卒读。”
虽然语文老师当时十分不悦,但20年后还是对已成名的华罗庚说:“我早就看了你的文章不落窠臼。”
华罗庚正是由于勤思考,爱创新,不迷信权威,才最终靠刻苦自学成为一名大数学家的。
如何破解小学数学题?
这个题目,虽说是小学的题目,但是考量的一个逻辑思维能力,
确实对小孩子的逻辑思维能起到一定的锻炼作用。
这个题目我的思路是这样子的,我们观察题目发现一个特点,
上午卖的3个球拍+2个足球,一共139块钱,
下午卖的4个球拍+4个足球,一共228块钱,
因为小学没有学过未知数,所以只能用他们能理解的方法来做,
我们观察发现,下午时候球拍和足球数量一样,一共228元,
假设我们把一个球拍+一个足球当做一个整体,那么我们可以求解出来,一个球拍+一个足球就是228/4=57块钱,
这个就很特别了,
并且上午卖了3个球拍+2个足球,一共139,
我们可以把上午的分成两部分,
2个球拍+2个足球,另外1个球拍,我们已经知道了1个球拍+1个足球是57块,
那么2个球拍+2个足球就是114块钱,
那么剩下的一个球拍就是139-114=25块钱,
那么足球就是57-25=32块钱。
这样就解答结束了。
这个题目重点在于先整体法,然后再分解求解。
乒乓球拍25元,儿童足球32元。
怎样解中考数学压轴题
今天,小编给大家整理了一份中考数学压轴题四大破解方法+考前预测卷(含答案),赶紧收藏转发。
01
近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。不过这些传说中的主角,并没有大家想象的那么神秘,只是我们需要找出这些压轴题目的切入点。
切入点一:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点二:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点三:紧扣不变量,并善于使用前题所采用的方法或结论
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
总之,问题的切入点很多,考试时也不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。
02
一道小学数学题(密码题),求高人破解!
选B
在字母表中将字母所对应的顺序表示出来。(如:a对应的为1,b对应的为2......)
可以发现C(3)到c(3) 差为0,P(16)到o(15)差为1,K(11)到m(13)差为2......由此规律可得:
C P K S H J N L
c o m p l e t e
由此可得差为0 1 2 3 4 5 6 7 8
(注意,有的是在原字母基础上加相应数字,如:11(K)+2=13(m),有的是在原字母基础上减去相应数字,如:16(P)-1=o(15)
按同样方法可得答案选B
快来破解数学题
设9个连续自然数的中间数为a,10个连续自然数的中间两个数之和为b,11个连续自然数的中间数为b,因为和相等,所以9a=5b=11c。9、5、11互质,它们的最小公倍数为9×5×11=495,即符合以上条件的最小自然数是495。
51+52+53+54+55+56+57+58+59=495
45+46+47+48+49+50+51+52+53+54=495
40+41+42+43+44+45+46+47+48+49+50=495